E. Simon

s also possible to treat the results ies and temperatures so that they is not so good. Such discrepancy thus of $T/\phi < 0.10$ our Debye θ hile Keesom & Keesom's values

of solid helium.

d.; A, 14.4 ml.

t four molar volumes.

Thermodynamic properties and melting of solid helium

increase with falling temperature. We may notice that Webb, Wilkinson & Wilks (1952) have also observed this effect.

In view of this relationship it is convenient to present certain thermodynamic properties of the solid in terms of T/ϕ and table 4 gives C_v , S and $(U-U_0)/T$ as

FIGURE 8. The molar-heat capacities of figure 6 plotted against the reduced temperature T/ϕ . O, 10-6 ml.; ϕ , 11-7 ml.; +, 13-0 ml.; Δ , 14-4 ml.

Table 3. Smoothed values of the parameter ϕ as a function of volume

V (ml.)	ϕ	V (ml.)	ϕ
10.5	113	15	48.5
11	101.5	16	41.4
12	83.2	17	35.7
13	68.7	18	31.1
14	57.4	19	27.2
		20	24.2

functions of T/ϕ . (The units of ϕ are arbitrary; they have, however, been chosen so as to be similar in magnitude to the Debye θ 's.) These values depend on an extrapolation of the specific heats to 0° K. This extrapolation entails some uncertainty owing to the above-mentioned discrepancy between our results and those of Keesom & Keesom. As, however, the maximum error will only be of the order of 0.01 entropy unit, it is quite immaterial for our purposes. For a fuller discussion of this point we refer to a paper by Webb & Wilks (1953).